The Design of Linear Algebra and Geometry
نویسنده
چکیده
Conventional formulations of linear algebra do not do justice to the fundamental concepts of meet, join, and duality in projective geometry. This defect is corrected by introducing Clifford algebra into the foundations of linear algebra. There is a natural extension of linear transformations on a vector space to the associated Clifford algebra with a simple projective interpretation. This opens up new possibilities for coordinate-free computations in linear algebra. For example, the Jordan form for a linear transformation is shown to be equivalent to a canonical factorization of the unit pseudoscalar. This approach also reveals deep relations between the structure of the linear geometries, from projective to metrical, and the structure of Clifford algebras. This is apparent in a new relation between additive and multiplicative forms for intervals in the cross-ratio. Also, various factorizations of Clifford algebras into Clifford algebras of lower dimension are shown to have projective interpretations. As an important application with many uses in physics as well as in mathematics, the various representations of the conformal group in Clifford algebra are worked out in great detail. A new primitive generator of the conformal group is identified. [Note: Some corrections have been added in brackets.]
منابع مشابه
Triple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملSeismic Behavior Effect of Knee Braced Frames Considering Different Type of Geometry under Non-Linear Analysis
The design and behavior of a ductile structural system called a knee-braced moment frame are presented in this paper. The design of this structural system is based on a capacity-design concept that results in ductile behavior. The knee part is a fuse-like component that dissipates energy by the formation of plastic flexural and/or shear hinges at its ends and mid-span, when the building is subj...
متن کاملSome results on Haar wavelets matrix through linear algebra
Can we characterize the wavelets through linear transformation? the answer for this question is certainly YES. In this paper we have characterized the Haar wavelet matrix by their linear transformation and proved some theorems on properties of Haar wavelet matrix such as Trace, eigenvalue and eigenvector and diagonalization of a matrix.
متن کاملFast and accurate normalization of vectors and quaternions
We present fast and accurate ways to normalize two and three dimensional vectors and quaternions and compute their length. Our approach is an adaptation of ideas used in the linear algebra library LAPACK, and we believe that the computational geometry and computer aided design communities are not aware of the possibility of speeding up these fundamental operations in the robust way proposed here.
متن کاملExistence and uniqueness of solution of Schrodinger equation in extended Colombeau algebra
In this paper, we establish the existence and uniqueness result of the linear Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra. The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau sense.
متن کامل